C.U.SHAH UNIVERSITY Summer Examination-2017

Subject Name: Discrete Mathematics

Subject Code: 4TE04DSM1		Branch: B.Tech (CE,IT)		
Seme	ster: 4 Date: 03/05/2017	Time: 02:00 To 05:00	Marks: 70	
 Instructions: (1) Use of Programmable calculator and any other electronic instrument is prohibited. (2) Instructions written on main answer book are strictly to be obeyed. (3) Draw neat diagrams and figures (if necessary) at right places. (4) Assume suitable data if needed. 				
Q-1	Attempt the following questions:		(14)	
a)	Find the least and greatest element in the PC	OSET $\langle N, D \rangle$, if they exist.	(01)	
b) c)	Define: Equivalence relation, Comparable e.	lement.	(02) (01)	
d)	Prove that $(ab + ab')a'b' = 0$.		(01)	
e) f) g)	Find the atom and anti-atom of $\langle P(X), \subseteq \rangle$. State Handshaking theorem and define cycle (Z_{+}) is cyclic group - True or False?	2.	(01) (02) (01)	
ь) h)	$(\Sigma_{10}, +_{10})$ is cyclic group. The of Faise Define: Difference of two fuzzy sets.		(01)	
i)	In how many ways can the letters of the wor them begin with M and end with Y?	d MONDAY be arranged? How n	nany of (02)	

Attempt any four questions from Q-2 to Q-8

Q-2Attempt all questions.(14)a) $\langle L, *, \oplus \rangle$ is a lattice an algebraic system then there exist an order relation \leq on L such(05)that $\langle L, \leq \rangle$ is a lattice as a poset. Where $a * b = glb \{a, b\}$, $a \oplus b = lub \{a, b\}$ for $\forall a, b \in L$.b) For a lattice $\langle S_{60}, D \rangle$, answer the following questions:(05)

- i) Find cover of each element and draw the Hasse diagram.
 - ii) Find lower bound, upper bound, greatest lower bound, least upper bound of $A = \{6, 12\}$.
- c) $\langle L, *, \oplus \rangle$ is a modular lattice if and only if $(a * b) \oplus (a * c) = a * (b \oplus (a * c))$. (04)

Page 1 of 3

Q-3 Attempt all questions	(14)	
a) Show that $\{1, 5, 7, 11\}$ is a subgroup of (Z_{12}^*, \times_{12}) , where \times_{12} is	multiplication modulo 12. (05)	
b) Prove that $\langle P(X), \subseteq \rangle$ is a complemented lattice and also define the definition of the definit	aw the Hasse diagram of (05)	
it, where $X = \{1, 2, 3\}$.		
c) Show that w is a valid conclusion from the premises $r \lor s$, ~	$t \Rightarrow r, r, s, t \Rightarrow w.$ (04)	
Q-4 Attempt all questions	(14)	
Let $\langle L, *, \oplus, ', 0, 1 \rangle$ be a complemented lattice and for any $a, b \in L$ then prove that		
$a \le b \Leftrightarrow a * b' = 0 \Leftrightarrow b' \le a' \Leftrightarrow a' \oplus b = 1.$ Let $E = \{0, 1, 2, 3\}, A = \{(0, 0.2), (1, 0.4)(2, 0.6), (3, 0.7)\}, (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0$		
$\underset{\sim}{B} = \{(0, 0.4), (1, 0.6)(2, 0.8), (3, 0.8)\}$ then find the following:		
1) $A \cup B$ 2) $A \cdot B$ 3) $A + B$ 4) $A - B$ 5) A'		
Obtain the sum of product canonical form of the Boolean expression in three variables $\alpha(x, y, z) = (x + y)(x + z') + y + z'$.		
Q-5 Attempt all questions	(14)	
a) State and prove Stone's representation theorem.	(10)	
State Distributive law for fuzzy subsets and prove any one. (0		
Q-6 Attempt all questions	(14)	
a) i) Draw the graph represented by given adjacency matrix $\begin{bmatrix} 1\\ 1\\ 1\\ 0 \end{bmatrix}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
ii) Write the adjacency matrix from the given digraph.		

b) Show that the set $Q \setminus \{1\}$ is an abelian group with respect to the binary operation (05) a * b = a + b - ab, for all $a, b \in G$.

Page 2 of 3

c) Solve the recurrence relation $a_n = 5a_{n-1} - 6a_{n-2}$, $n \ge 2$; $a_0 = 1$, $a_1 = 2$. (04)

Q-7 Attempt all questions.

a) Define: Pseudo graph, Cycle, Reachable set, Node base, Level of vertex (05)

(14)

(14)

(05)

(04)

b) Prove that $(Z_5, +_5)$ is a group. Moreover check that it is cyclic or not, if it is cyclic (05) then find generators.

c) By using mathematical induction prove that
$$1^3 + 2^3 + 3^3 + ... + n^3 = \left(\frac{n(n+1)}{2}\right)^2$$
. (04)

Q-8 Attempt all questions.

- a) Draw a directed tree from following and also find the representation of binary tree. (05) $\begin{pmatrix}
 v_0 \left(v_1 \left(\left(v_2 \right) \left(v_3 \right) \left(v_4 \left(v_5 \right) \left(v_6 \right) \right) \right) \right) \left(v_7 \left(\left(v_8 \left(\left(v_9 \right) \left(v_{10} \right) \left(v_{11} \right) \right) \right) \left(v_{12} \right) \right) \right)
 \end{pmatrix}$
- **b**) State and prove the Lagrange's theorem.
- c) Do as directed:
 - 1) Translate each of the statement into symbols, using quantifiers, predicate symbols.
 - i) "Every student either can speak Tamil or knows C++."
 - ii) "Some men are genius."
 - 2) Translate the following in your own words.

A(x): x is a whale, B(x): x is a fish, C(x): x lives in water.

i) $(\exists x) (B(x) \land \sim A(x))$ ii) $(\forall x) (A(x) \lor C(x)) \Rightarrow B(x)$

Page 3 of 3